Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
2.
Front Immunol ; 15: 1331345, 2024.
Article in English | MEDLINE | ID: mdl-38370401

ABSTRACT

Chimeric antigen receptor (CAR) T cell technology has ushered in a new era of immunotherapy, enabling the targeting of a broad range of surface antigens, surpassing the limitations of traditional T cell epitopes. Despite the wide range of non-protein tumor-associated antigens, the advancement in crafting CAR T cells for these targets has been limited. Owing to an evolutionary defect in the CMP-Neu5Ac hydroxylase (CMAH) that abolishes the synthesis of CMP-Neu5Gc from CMP-Neu5Ac, Neu5Gc is generally absent in human tissues. Despite this, Neu5Gc-containing antigens, including the ganglioside GM3(Neu5Gc) have consistently been observed on tumor cells across a variety of human malignancies. This restricted expression makes GM3(Neu5Gc) an appealing and highly specific target for immunotherapy. In this study, we designed and evaluated 14F7-28z CAR T cells, with a targeting unit derived from the GM3(Neu5Gc)-specific murine antibody 14F7. These cells exhibited exceptional specificity, proficiently targeting GM3(Neu5Gc)-expressing murine tumor cells in syngeneic mouse models, ranging from B cell malignancies to epithelial tumors, without compromising safety. Notably, human tumor cells enhanced with murine Cmah were effectively targeted and eliminated by the 14F7 CAR T cells. Nonetheless, despite the detectable presence of GM3(Neu5Gc) in unmodified human tumor xenografts, the levels were insufficient to trigger a tumoricidal T-cell response with the current CAR T cell configuration. Overall, our findings highlight the potential of targeting the GM3(Neu5Gc) ganglioside using CAR T cells across a variety of cancers and set the stage for the optimization of 14F7-based therapies for future human clinical application.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , G(M3) Ganglioside/therapeutic use , Antigens, Neoplasm
3.
Res Pract Thromb Haemost ; 8(1): 102289, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38292350

ABSTRACT

Background: Several studies have examined parameters of increased thrombogenicity in COVID-19, but studies examining their association with long-term outcome and potential effects of antiviral agents in hospitalized patients with COVID-19 are scarce. Objectives: To evaluate plasma levels of hemostatic proteins during hospitalization in relation to disease severity, treatment modalities, and persistent pulmonary pathology after 3 months. Methods: In 165 patients with COVID-19 recruited into the NOR-Solidarity trial (NCT04321616) and randomized to treatment with hydroxychloroquine, remdesivir, or standard of care, we analyzed plasma levels of hemostatic proteins during the first 10 days of hospitalization (n = 160) and at 3 months of follow-up (n = 100) by enzyme immunoassay. Results: Our main findings were as follows: (i) tissue plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI) were increased in patients with severe disease (ie, the combined endpoint of respiratory failure [Po2-to-FiO2 ratio, <26.6 kPa] or need for treatment at an intensive care unit) during hospitalization. Compared to patients without severe disease, tPA levels were a median of 42% (P < .001), 29% (P = .002), and 36% (P = .015) higher at baseline, 3 to 5 days, and 7 to 10 days, respectively. For TFPI, median levels were 37% (P = .003), 25% (P < .001), and 10% (P = .13) higher in patients with severe disease at these time points, respectively. No changes in thrombin-antithrombin complex; alpha 2-antiplasmin; a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; or antithrombin were observed in relation to severe disease. (ii) Patients treated with remdesivir had lower levels of TFPI than those in patients treated with standard of care alone. (iii) TFPI levels during hospitalization, but not at 3 months of follow-up, were higher in those with persistent pathology on chest computed tomography imaging 3 months after hospital admission than in those without such pathology. No consistent changes in thrombin-antithrombin complex, alpha 2-antiplasmin, ADAMTS-13, tPA, or antithrombin were observed in relation to pulmonary pathology at 3 months of follow-up. Conclusion: TFPI and tPA are associated with severe disease in hospitalized patients with COVID-19. For TFPI, high levels measured during the first 10 days of hospitalization were also associated with persistent pulmonary pathology even 3 months after hospital admittance.

4.
J Clin Lipidol ; 18(1): e80-e89, 2024.
Article in English | MEDLINE | ID: mdl-37981531

ABSTRACT

BACKGROUND: Severe hypertriglyceridemia can be caused by pathogenic variants in genes encoding proteins involved in the metabolism of triglyceride-rich lipoproteins. A key protein in this respect is lipoprotein lipase (LPL) which hydrolyzes triglycerides in these lipoproteins. Another important protein is glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) which transports LPL to the luminal side of the endothelial cells. OBJECTIVE: Our objective was to identify a genetic cause of hypertriglyceridemia in 459 consecutive unrelated subjects with levels of serum triglycerides ≥20 mmol/l. These patients had been referred for molecular genetic testing from 1998 to 2021. In addition, we wanted to study whether GPIHBP1 autoantibodies also were a cause of hypertriglyceridemia. METHODS: Molecular genetic analyses of the genes encoding LPL, GPIHBP1, apolipoprotein C2, lipase maturation factor 1 and apolipoprotein A5 as well as apolipoprotein E genotyping, were performed in all 459 patients. Serum was obtained from 132 of the patients for measurement of GPIHBP1 autoantibodies approximately nine years after molecular genetic testing was performed. RESULTS: A monogenic cause was found in four of the 459 (0.9%) patients, and nine (2.0%) patients had dyslipoproteinemia due to homozygosity for apolipoprotein E2. One of the 132 (0.8%) patients had GPIHBP1 autoantibody syndrome. CONCLUSION: Only 0.9% of the patients had monogenic hypertriglyceridemia, and only 0.8% had GPIHBP1 autoantibody syndrome. The latter figure is most likely an underestimate because serum samples were obtained approximately nine years after hypertriglyceridemia was first identified. There is a need to implement measurement of GPIHBP1 autoantibodies in clinical medicine to secure that proper therapeutic actions are taken.


Subject(s)
Hypertriglyceridemia , Receptors, Lipoprotein , Humans , Autoantibodies , Endothelial Cells , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Lipoproteins , Hypertriglyceridemia/genetics , Triglycerides/metabolism , Molecular Biology , Apolipoproteins
5.
J Intern Med ; 294(6): 784-797, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37718572

ABSTRACT

BACKGROUND: Abnormal remodelling of the extracellular matrix (ECM) has generally been linked to pulmonary inflammation and fibrosis and may also play a role in the pathogenesis of severe COVID-19. To further elucidate the role of ECM remodelling and excessive fibrogenesis in severe COVID-19, we examined circulating levels of mediators involved in various aspects of these processes in COVID-19 patients. METHODS: Serial blood samples were obtained from two cohorts of hospitalised COVID-19 patients (n = 414). Circulating levels of ECM remodelling mediators were quantified by enzyme immunoassays in samples collected during hospitalisation and at 3-month follow-up. Samples were related to disease severity (respiratory failure and/or treatment at the intensive care unit), 60-day total mortality and pulmonary pathology after 3-months. We also evaluated the direct effect of inactivated SARS-CoV-2 on the release of the different ECM mediators in relevant cell lines. RESULTS: Several of the measured markers were associated with adverse outcomes, notably osteopontin (OPN), S100 calcium-binding protein A12 and YKL-40 were associated with disease severity and mortality. High levels of ECM mediators during hospitalisation were associated with computed tomography thorax pathology after 3-months. Some markers (i.e. growth differential factor 15, galectin 3 and matrix metalloproteinase 9) were released from various relevant cell lines (i.e. macrophages and lung cell lines) in vitro after exposure to inactivated SARS-CoV-2 suggesting a direct link between these mediators and the causal agent of COVID-19. CONCLUSION: Our findings highlight changes to ECM remodelling and particularly a possible role of OPN, S100A12 and YKL-40 in the pathogenesis of severe COVID-19.


Subject(s)
COVID-19 , Pneumonia , Humans , COVID-19/metabolism , Chitinase-3-Like Protein 1 , SARS-CoV-2 , Extracellular Matrix
6.
Tidsskr Nor Laegeforen ; 143(11)2023 08 15.
Article in English, Norwegian | MEDLINE | ID: mdl-37589359

ABSTRACT

BACKGROUND: In Norway, treatment with COVID-19 convalescent plasma has been given through the NORPLASMA project. The treatment was initially offered to critically ill patients after an individual assessment, but from December 2020, the indication was limited to critically ill, immunocompromised patients. In this article we describe clinical characteristics, comorbidity and mortality in patients who received convalescent plasma in these two periods. MATERIAL AND METHOD: From 22 April 2020 to 30 March 2022, a total of 79 patients were included in the observational studies NORPLASMA MONITOR and the Norwegian SARS-CoV-2 study. The patients had received a total of 193 units of convalescent plasma at 15 Norwegian hospitals/nursing homes; 62 in South-Eastern Norway Regional Health Authority, 8 in Western Norway Regional Health Authority and 9 in Central Norway Regional Health Authority. Information on immune status, comorbidity and course of infection was retrieved from the patient records after informed written consent was obtained. RESULTS: Of 79 patients with a median age of 65 years (interquartile range 51-⁠73) who were treated with convalescent plasma, 31 (39 %) died during hospitalisation. A total of 59 patients were immunocompromised, and of these, 20 died in hospital compared to 11 of 20 who were assumed to be immunocompetent. Median number of comorbidities was 2 (interquartile range 1-4). The patients received a median of two plasma units (min.-max. 1-21). Two of the patients developed mild allergic skin reactions. INTERPRETATION: Convalescent plasma was well tolerated by patients with COVID-19. Immunocompromised patients may have benefitted from the treatment, with lower mortality than for those assumed to be immunocompetent.


Subject(s)
COVID-19 , Dermatitis, Atopic , Aged , Humans , COVID-19/therapy , COVID-19 Serotherapy , Critical Illness/therapy , SARS-CoV-2 , Middle Aged
7.
Cell Death Discov ; 9(1): 125, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055391

ABSTRACT

The microenvironment of chronic lymphocytic leukemia (CLL) cells in lymph nodes, spleen, and bone marrow provides survival, proliferation, and drug resistance signals. Therapies need to be effective in these compartments, and pre-clinical models of CLL that are used to test drug sensitivity must mimic the tumor microenvironment to reflect clinical responses. Ex vivo models have been developed that capture individual or multiple aspects of the CLL microenvironment, but they are not necessarily compatible with high-throughput drug screens. Here, we report on a model that has reasonable associated costs, can be handled in a regularly equipped cell lab, and is compatible with ex vivo functional assays including drug sensitivity screens. The CLL cells are cultured with fibroblasts that express the ligands APRIL, BAFF and CD40L for 24 h. The transient co-culture was shown to support survival of primary CLL cells for at least 13 days, and mimic in vivo drug resistance signals. Ex vivo sensitivity and resistance to the Bcl-2 antagonist venetoclax correlated with in vivo responses. The assay was used to identify treatment vulnerabilities and guide precision medicine for a patient with relapsed CLL. Taken together, the presented CLL microenvironment model enables clinical implementation of functional precision medicine in CLL.

8.
Crit Care ; 27(1): 69, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36814280

ABSTRACT

BACKGROUND: Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce. METHODS: Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; n = 123) and three-month post-admission (n = 50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality. RESULTS: Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted p < 0.001). The ICU-related dysbiosis index at baseline correlated with systemic inflammation and was associated with 60-day mortality in univariate analyses (Hazard ratio 3.70 [2.00-8.6], p < 0.001), as well as after separate adjustment for covariates. At the three-month follow-up, the dysbiosis index remained elevated in ICU patients compared with ward patients (adjusted p = 0.007). CONCLUSIONS: Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted. Trial registration NCT04381819 . Retrospectively registered May 11, 2020.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Cohort Studies , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Viral , SARS-CoV-2/genetics , Hospitalization
10.
Crit Care ; 27(1): 9, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627655

ABSTRACT

BACKGROUND: Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. METHODS: Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. RESULTS: Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49-69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI - 0.1% [- 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (- 3.2% [- 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. CONCLUSION: This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 ).


Subject(s)
COVID-19 , Humans , Adult , Male , Middle Aged , Female , SARS-CoV-2 , RNA, Viral , COVID-19 Drug Treatment , Double-Blind Method
11.
Mob DNA ; 13(1): 23, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209098

ABSTRACT

BACKGROUND: Mobile group I introns encode homing endonucleases that confer intron mobility initiated by a double-strand break in the intron-lacking allele at the site of insertion. Nuclear ribosomal DNA of some fungi and protists contain mobile group I introns harboring His-Cys homing endonuclease genes (HEGs). An intriguing question is how protein-coding genes embedded in nuclear ribosomal DNA become expressed. To address this gap of knowledge we analyzed nuclear L2066 group I introns from myxomycetes and ascomycetes. RESULTS: A total of 34 introns were investigated, including two identified mobile-type introns in myxomycetes with HEGs oriented in sense or antisense directions. Intriguingly, both HEGs are interrupted by spliceosomal introns. The intron in Didymium squamulosum, which harbors an antisense oriented HEG, was investigated in more detail. The group I intron RNA self-splices in vitro, thus generating ligated exons and full-length intron circles. The intron HEG is expressed in vivo in Didymium cells, which involves removal of a 47-nt spliceosomal intron (I-47) and 3' polyadenylation of the mRNA. The D. squamulosum HEG (lacking the I-47 intron) was over-expressed in E. coli, and the corresponding protein was purified and shown to confer endonuclease activity. The homing endonuclease was shown to cleave an intron-lacking DNA and to produce a pentanucleotide 3' overhang at the intron insertion site. CONCLUSIONS: The L2066 family of nuclear group I introns all belong to the group IE subclass. The D. squamulosum L2066 intron contains major hallmarks of a true mobile group I intron by encoding a His-Cys homing endonuclease that generates a double-strand break at the DNA insertion site. We propose a potential model to explain how an antisense HEG becomes expressed from a nuclear ribosomal DNA locus.

13.
Infect Dis (Lond) ; 54(12): 918-923, 2022 12.
Article in English | MEDLINE | ID: mdl-35984738

ABSTRACT

BACKGROUND: The lungs are the organ most likely to sustain serious injury from coronavirus disease 2019 (COVID-19). However, the mechanisms for long-term complications are not clear. Patients with severe COVID-19 have shorter telomere lengths and higher levels of cellular senescence, and we hypothesized that circulating levels of the telomere-associated senescence markers chitotriosidase, ß-galactosidase, cathelicidin antimicrobial peptide and stathmin 1 (STMN1) were elevated in hospitalized COVID-19 patients compared to controls and could be associated with pulmonary sequelae following hospitalization. METHODS: Ninety-seven hospitalized patients with COVID-19 who underwent assessment for pulmonary sequelae at three-month follow-up were included in the study. ß-Galactosidase and chitotriosidase were analysed by fluorescence; stathmin 1 and cathelicidin antimicrobial peptide were analysed by enzyme immuno-assay in plasma samples from the acute phase and after three-months. In addition, the classical senescence markers cyclin-dependent kinase inhibitor 1A and 2A were analysed by enzyme immuno-assay in peripheral blood mononuclear cell lysate after three months. RESULTS: We found elevated plasma levels of the senescence markers chitotriosidase and stathmin 1 in patients three months after hospitalization with COVID-19, and these markers in addition to protein levels of cyclin-dependent kinase inhibitor 2A in cell lysate, were associated with pulmonary pathology. The elevated levels of these markers seem to reflect both age-dependent (chitotriosidase) and age-independent (stathmin 1, cyclin-dependent kinase inhibitor 2A) processes. CONCLUSIONS: We suggest that accelerated ageing or senescence could be important for long-term pulmonary complications of COVID-19, and our findings may be relevant for future research exploring the pathophysiology and management of these patients.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Stathmin , Leukocytes, Mononuclear/metabolism , Cellular Senescence/physiology , beta-Galactosidase/metabolism , Biomarkers , Disease Progression , Cyclin-Dependent Kinases
14.
J Intern Med ; 292(5): 816-828, 2022 11.
Article in English | MEDLINE | ID: mdl-35982589

ABSTRACT

BACKGROUND: T-cell activation is associated with an adverse outcome in COVID-19, but whether T-cell activation and exhaustion relate to persistent respiratory dysfunction and death is unknown. OBJECTIVES: To investigate whether T-cell activation and exhaustion persist and are associated with prolonged respiratory dysfunction and death after hospitalization for COVID-19. METHODS: Plasma and serum from two Norwegian cohorts of hospitalized patients with COVID-19 (n = 414) were analyzed for soluble (s) markers of T-cell activation (sCD25) and exhaustion (sTim-3) during hospitalization and follow-up. RESULTS: Both markers were strongly associated with acute respiratory failure, but only sTim-3 was independently associated with 60-day mortality. Levels of sTim-3 remained elevated 3 and 12 months after hospitalization and were associated with pulmonary radiological pathology after 3 months. CONCLUSION: Our findings suggest prolonged T-cell exhaustion is an important immunological sequela, potentially related to long-term outcomes after severe COVID-19.


Subject(s)
COVID-19 , Cohort Studies , Humans , Lymphocyte Activation , SARS-CoV-2 , T-Lymphocytes
15.
J Infect Dis ; 226(12): 2150-2160, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35876699

ABSTRACT

BACKGROUND: Immune dysregulation is a major factor in the development of severe coronavirus disease 2019 (COVID-19). The homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is limited. We thus investigated the levels of these chemokines in COVID-19 patients. METHODS: Serial blood samples were obtained from patients hospitalized with COVID-19 (n = 414). Circulating CCL19 and CCL21 levels during hospitalization and 3-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from public repositories were performed to further explore possible regulatory mechanisms. RESULTS: A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at admission were associated with persisting impairment of pulmonary function at the 3-month follow-up. CONCLUSIONS: Our findings highlight CCL19 and CCL21 as markers of immune dysregulation in COVID-19. This may reflect aberrant regulation triggered by tissue inflammation, as observed in other chronic inflammatory and autoimmune conditions. Determination of the source and regulation of these chemokines and their effects on lung tissue is warranted to further clarify their role in COVID-19. CLINICAL TRIALS REGISTRATION: NCT04321616 and NCT04381819.


Subject(s)
COVID-19 , Humans , Chemokine CCL19 , Chemokine CCL21 , Chemokines , Inflammation , Patient Acuity , Receptors, CCR7 , SARS-CoV-2
16.
Br J Haematol ; 198(3): 556-573, 2022 08.
Article in English | MEDLINE | ID: mdl-35655388

ABSTRACT

Chronic lymphocytic leukaemia (CLL) is characterised by malignant mature-like B cells. Supportive to CLL cell survival is chronic B-cell receptor (BCR) signalling; however, emerging evidence demonstrates CLL cells proliferate in response to T-helper (Th) cells in a CD40L-dependent manner. We showed provision of Th stimulation via CD40L upregulated CD45 phosphatase activity and BCR signalling in non-malignant B cells. Consequently, we hypothesised Th cell upregulation of CLL cell CD45 activity may be an important regulator of CLL BCR signalling and proliferation. Using patient-derived CLL cells in a culture system with activated autologous Th cells, results revealed increases in both Th and CLL cell CD45 activity, which correlated with enhanced downstream antigen receptor signalling and proliferation. Concomitantly increased was the surface expression of Galectin-1, a CD45 ligand, and CD43, a CLL immunophenotypic marker. Galectin-1/CD43 double expression defined a proliferative CLL cell population with enhanced CD45 activity. Targeting either Galectin-1 or CD43 using silencing, pharmacology, or monoclonal antibody strategies dampened CD45 activity and CLL cell proliferation. These results highlight a mechanism where activated Th cells drive CLL cell BCR signalling and proliferation via Galectin-1 and CD43-mediated regulation of CD45 activity, identifying modulation of CD45 phosphatase activity as a potential therapeutic target in CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , CD40 Ligand , Cell Proliferation , Galectin 1 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , T-Lymphocytes, Helper-Inducer
17.
J Infect ; 85(1): 57-63, 2022 07.
Article in English | MEDLINE | ID: mdl-35605805

ABSTRACT

OBJECTIVES: To determine the incidence and characteristics of superinfections in mechanically ventilated COVID-19 patients, and the impact of dexamethasone as standard therapy. METHODS: This multicentre, observational, retrospective study included patients ≥ 18 years admitted from March 1st 2020 to January 31st 2021 with COVID-19 infection who received mechanical ventilation. Patient characteristics, clinical characteristics, therapy and survival were examined. RESULTS: 155/156 patients (115 men, mean age 62 years, range 26-84 years) were included. 67 patients (43%) had 90 superinfections, pneumonia dominated (78%). Superinfections were associated with receiving dexamethasone (66% vs 32%, p<0.0001), autoimmune disease (18% vs 5.7%, p<0.016) and with longer ICU stays (26 vs 17 days, p<0,001). Invasive fungal infections were reported exclusively in dexamethasone-treated patients [8/67 (12%) vs 0/88 (0%), p<0.0001]. Unadjusted 90-day survival did not differ between patients with or without superinfections (64% vs 73%, p=0.25), but was lower in patients receiving dexamethasone versus not (58% vs 78%, p=0.007). In multiple regression analysis, superinfection was associated with dexamethasone use [OR 3.7 (1.80-7.61), p<0.001], pre-existing autoimmune disease [OR 3.82 (1.13-12.9), p=0.031] and length of ICU stay [OR 1.05 p<0.001]. CONCLUSIONS: In critically ill COVID-19 patients, dexamethasone as standard of care was strongly and independently associated with superinfections.


Subject(s)
Autoimmune Diseases , COVID-19 , Superinfection , Adrenal Cortex Hormones/adverse effects , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/etiology , Dexamethasone/adverse effects , Humans , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Superinfection/etiology
18.
J Intern Med ; 291(6): 801-812, 2022 06.
Article in English | MEDLINE | ID: mdl-35212063

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) is primarily a respiratory infection, mounting evidence suggests that the gastrointestinal tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and are related to long-term respiratory dysfunction remains unknown. METHODS: Plasma was collected during hospital admission and after 3 months from the NOR-Solidarity trial (n = 181) and analyzed for markers of gut barrier dysfunction and inflammation. At the 3-month follow-up, pulmonary function was assessed by measuring the diffusing capacity of the lungs for carbon monoxide (DLCO ). Rectal swabs for gut microbiota analyses were collected (n = 97) and analyzed by sequencing the 16S rRNA gene. RESULTS: Gut microbiota diversity was reduced in COVID-19 patients with respiratory dysfunction, defined as DLCO below the lower limit of normal 3 months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced relative abundance of 20 bacterial taxa and increased abundance of five taxa, including Veillonella, potentially linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2 /fiO2 (P/F ratio) <26.6 kPa. LBP levels remained elevated during and after hospitalization and were associated with low-grade inflammation and respiratory dysfunction after 3 months. CONCLUSION: Respiratory dysfunction after COVID-19 is associated with altered gut microbiota and persistently elevated LBP levels. Our results should be regarded as hypothesis generating, pointing to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , COVID-19/complications , Clinical Trials as Topic , Humans , Inflammation , RNA, Ribosomal, 16S/genetics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
19.
Tidsskr Nor Laegeforen ; 141(2)2022 02 01.
Article in English, Norwegian | MEDLINE | ID: mdl-35107949

ABSTRACT

BACKGROUND: The objective of this article is to summarise the course of illness and treatment for patients with COVID-19 admitted to Bærum Hospital since the start of the pandemic. MATERIAL AND METHOD: We present data from a prospective observational study with the aim of systematising knowledge about patients admitted because of COVID-19. All patients admitted to Bærum Hospital up to and including 28 June 2021 were included. The results are presented for three waves of admissions: 9 March-23 June 2020, 21 September 2020-28 February 2021 and 1 March-28 June 2021. RESULTS: A total of 300 patients, divided into 77, 101 and 122 in the three waves respectively, were admitted because of COVID-19. The number of hospital deaths during the three waves was 14 (18 %), 11 (11 %) and 5 (4 %) respectively. The average age of the patients was 67.6 years in the first wave and 53.3 years in the third wave. Altogether 204 patients (68 %) received medical oxygen or ventilation support, and 31 of these (10 % of all the patients) received invasive ventilation support. Non-invasive ventilation support was used as the highest level of treatment in 4 (8 %), 9 (13 %) and 17 (20 %) patients with respiratory failure in the three waves respectively. In the second and third wave, 125 out of 152 patients with respiratory failure (82 %) were treated with dexamethasone. INTERPRETATION: Differences in patient characteristics and changes to treatment methods, such as the use of dexamethasone and non-invasive ventilation support, may have contributed to the apparent fall in mortality from the first to the third wave. Conditions that are not registered in the study, such as vaccination status, may also have impacted on mortality.


Subject(s)
COVID-19 , Aged , Hospitalization , Hospitals , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...